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Abstract

Background/Objectives: This systematic review aims to synthesize recent studies on the in-
tegration of artificial intelligence (AI) into robotic surgery for oncological patients. It focuses
on studies using real patient data and AI tools in robotic oncologic surgery. Methods: This
systematic review followed PRISMA guidelines to ensure a robust methodology. A com-
prehensive search was conducted in June 2025 across Embase, Medline, Web of Science,
medRxiv, Google Scholar, and IEEE databases, using MeSH terms, relevant keywords, and
Boolean logic. Eligible studies were original research articles published in English between
2024 and 2025, focusing on AI applications in robotic cancer surgery using real patient
data. Studies were excluded if they were non-peer-reviewed, used synthetic/preclinical
data, addressed non-oncologic indications, or explored non-robotic AI applications. This
approach ensured the selection of studies with practical clinical relevance. Results: The
search identified 989 articles, with 17 duplicates removed. After screening, 921 were ex-
cluded, and 37 others were eliminated for reasons such as misalignment with inclusion
criteria or lack of full text. Ultimately, 14 articles were included, with 8 using a retrospective
design and 6 based on prospective data. These included articles that varied significantly
in terms of the number of participants, ranging from several dozen to several thousand.
These studies explored the application of AI across various stages of robotic oncologic
surgery, including preoperative planning, intraoperative support, and postoperative pre-
dictions. The quality of 11 included studies was very good and good. Conclusions: AI
significantly supports robotic oncologic surgery at various stages. In preoperative planning,
it helps estimate the risk of conversion from minimally invasive to open colectomy in
colon cancer. During surgery, AI enables precise tumor and vascular structure localization,
enhancing resection accuracy, preserving healthy tissue, and reducing warm ischemia
time. Postoperatively, AI’s flexibility in predicting functional and oncological outcomes
through context-specific models demonstrates its value in improving patient care. Due to
the relatively small number of cases analyzed, further analysis of the issues presented in
this review is necessary.
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1. Introduction
Since the first iterations of the da Vinci surgical system marked the beginning of

computer-assisted surgery, the field has rapidly progressed [1]. Over time, the integration
of artificial intelligence (AI) into surgical workflows has intensified, from basic assistive
functions to advanced models capable of supporting real-time decision making and per-
sonalized surgical strategies.

The application of smart technologies in surgery was already comprehensively ad-
dressed in 2018 in a landmark narrative review by Hashimoto et al. [2]. This early work
provided a structured overview of how AI could be integrated into various stages of surgi-
cal care—ranging from preoperative planning and intraoperative guidance to postoperative
monitoring.

In the following years, AI technologies have been continuously refined and expanded.
A notable milestone in the knowledge and research on this topic was the systematic review
published in 2021 by Moglia et al. [3], which was among the first attempts to summarize
the role of AI in robot-assisted surgery. However, most of the included studies were
preclinical or based on simulations, focusing primarily on technical validation rather than
clinical outcomes. Moglia’s review did not include studies with real oncologic patients and
therefore clinical outcomes were largely missing.

The present systematic review offers an updated synthesis of recent studies on the
integration of artificial intelligence in robotic surgery, with a specific focus on applications
evaluated in real oncological patients. By narrowing the scope to clinically implemented
AI tools, this review aims to highlight how these technologies are currently being trans-
lated into real-world surgical practice. It examines the use of AI across the perioperative
continuum—including preoperative planning and risk stratification, intraoperative de-
cision support and image guidance, as well as postoperative outcome prediction and
recovery monitoring—emphasizing its role in enabling personalized oncologic surgery
based on individual patient data. Another distinguishing feature of this review is its ex-
clusive focus on studies conducted in populations of oncologic patients. Cancer surgery
constitutes one of the most technically and cognitively complex areas of surgical care,
due to the need for accurate tumor excision, margin clearance, and preservation of vital
structures. Beyond tumor removal, it requires achieving negative margins, performing
adequate lymphadenectomy, and preserving vital anatomical and functional structures.
These procedures are often carried out in anatomically complex regions and directly affect
patient survival and quality of life. Integrating AI into robotic cancer surgery represents
a shift from mechanical assistance to intelligent surgical support. AI applications span
from preoperative imaging analysis and intraoperative structure recognition to real-time
navigation, margin assessment, and outcome prediction. In oncology—where surgical
precision is critical—these tools hold particular promise.

To ensure this review’s relevance and timeliness, we included only studies published in
the last 18 months. Given the rapid advancements in this field—particularly the emergence
of transformer-based models and multi-modal AI architectures—restricting the timeframe
to recent years allowed us to capture the most clinically meaningful innovations.

Eligible publications were limited to studies applying AI tools to robotic oncologic
surgery based on real patient data with demonstrable clinical potential. We excluded studies
using only synthetic or preclinical datasets, non-oncologic indications, or AI applications
unrelated to robotic surgery (e.g., conventional laparoscopy or training simulations). This
focused approach ensured practical applicability and alignment with the review’s aim of
evaluating AI’s real-world contribution to oncologic robotic surgery.

To structure the analysis and facilitate clinical interpretation, the included publications
were grouped into three thematic categories: preoperative planning, intraoperative support,
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and postoperative predictions. This categorization reflects the natural progression of the
surgical care continuum and highlights the distinct roles AI can play at each phase—from
optimizing risk assessment and surgical strategy before the procedure, through real-time
guidance and anatomical recognition during surgery, to forecasting outcomes and inform-
ing personalized follow-up after the operation.

While some reviews have examined AI in surgery or robotic systems, the specific
intersection of AI, robotics, and oncologic surgery remains underexplored. A dedicated
systematic review is therefore both timely and necessary to map current evidence, identify
gaps, and inform future clinical and research directions.

2. Materials and Methods
2.1. Study Design and Search Strategy

This systematic review adhered to the preferred reporting items for systematic re-
views and meta-analyses (PRISMA) guidelines to guarantee a thorough and well-organized
methodology [4], though the systematic review’s protocol has not been prepared. The
search was conducted in June 2025. A literature search was performed across Embase,
Medline, Web of Science, medRxiv, Google Scholar, and Institute of Electrical and Elec-
tronics Engineers database (IEEE) to ensure comprehensive coverage of both medical and
technological aspects of the investigated topic. The search approach combined medical
subject headings (MeSH) terms, relevant keywords, and Boolean logic to achieve a wide
yet focused selection of studies. The search strings used in each database are presented in
Table A1 (Appendix A).

2.2. Eligibility Criteria and Study Selection

Studies were eligible for inclusion if they were original research articles published in
English between 2024 and 2025, focused on the application of artificial intelligence to any
phase of robotic cancer surgery. Only publications applying AI tools to robotic oncologic
surgery based on real patient data and demonstrating clinical potential were included.
Studies were excluded if they were non-peer-reviewed (e.g., editorials, letters, abstracts,
or case reports), used only synthetic or preclinical datasets, addressed non-oncologic
indications, or explored AI applications unrelated to robotic surgery (e.g., conventional
laparoscopy or surgical training simulations). This focused approach ensured practical
applicability and alignment with the review’s aim of evaluating AI’s real-world contribution
to oncologic robotic surgery.

The selection of relevant studies was carried out independently and in a blinded
manner by two authors (A.L. and M.Se). In case of disagreement, a third author was
consulted to reach a consensus. Titles and abstracts were screened for relevance, followed by
full-text assessments based on the predefined eligibility criteria. Any discrepancies between
the reviewers were resolved through discussion and consensus. The study selection process
is summarized in the PRISMA flow diagram, Figure 1.

2.3. Data Extraction and Assessment

The following variables were extracted and reported: study characteristics, clinical
context, AI application, model evaluation, and clinical relevance. Outcomes were extracted
as reported in the studies, without any predefined assumptions regarding which specific
results should be collected. This review comprises studies with heterogeneous designs and
methodologies, and the endpoints assessed varied substantially. Some studies focused on
populations with colorectal cancer, while others examined patients with kidney, prostate,
or pancreatic cancer. Additionally, some studies employed a retrospective design, while
others were prospective in nature. The outcome measures also differed across studies, with



J. Clin. Med. 2025, 14, 6181 4 of 15

some reporting metrics such as the area under the curve (AUC), while others used the
Dice coefficient or Tetrafecta, among other measures. Taken together, these factors made it
infeasible to perform a formal meta-analysis. Data were summarized in structured tables
by one reviewer and verified by another. A formal quality assessment was conducted by
both reviewers using the National Institutes of Health (NIH) criteria and the Transparent
Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis–
Artificial Intelligence (TRIPOD-AI) guidelines (see Table A2, Appendix A). The collected
results were presented in both narrative and tabular form.

Figure 1. PRISMA flow chart.

3. Results
The initial search of the databases identified 989 articles, with 17 duplicates removed.

Following a review of titles and abstracts, 921 articles were excluded as they did not meet
the inclusion criteria. Of the remaining articles, 51 were deemed potentially relevant
and were assessed further; however, 37 of them (as well as the 2 identified during the
evaluation) were ultimately excluded due to reasons such as a study objective not aligned
with our inclusion criteria [5–23], an intervention different from the one analyzed [24–34],
the study not involving human subjects [35–38], or unavailability of the full text for our
reviewers [39–43]. Ultimately, 14 articles were selected for inclusion in the review [44–57].
Eight studies employed a retrospective design, while six reported data from prospective
enrolment. The included studies varied significantly in terms of the number of participants,
ranging from 17 in Chen et al. to 26,546 in Emile et al. (Table 1).
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Table 1. Characteristics of research and data.

Study Study Characteristics Clinical Context AI Application Model Evaluation Clinical Relevance

Preoperative planning

Emile et al. (2024) [44]
Retrospective case–control;
demographic, clinical, surgical data;
internal validation (NCDB)

Conversion from MIS to open
colectomy; 30-/90-day mortality, LOS,
readmission, OS; 26,546 stage I–III
colon cancer patients

ChatGPT-generated R code;
multivariate logistic regression;
OR-based model; VIF; R code available

OR up to 17.8 (high-risk); reduced to
8.9 with robotics; AUC not reported

May assist in surgical planning and
platform selection

Huang et al. (2024) [45]
Retrospective cohort; demographic,
perioperative, CT imaging; internal
only

RAPN; Tetrafecta (WIT < 25 min,
negative margins, no major
complications, preserved renal
function); 141 patients

AI-based segmentation + 3D
reconstruction (Yorktal IPS);
automated SPARE score + Tetrafecta
prediction

AUC: 0.854 (3D) vs. 0.755 (2D);
categorical 0.658 vs. 0.643

Improved risk stratification and
surgical planning using 3D imaging

Lu et al. * (2024) [46] Prospective cohort; anatomical (MRI)
and surgical data; internal validation

RARP; operative time, EBL, surgical
margin; 219 patients

XGBoost; prediction of prolonged
operative time; SHAP explainability

XGBoost outperformed logistic
regression (no details reported)

Identifying challenging anatomy may
aid surgical planning

Mei et al. (2025) [47]
Retrospective DL with segmentation;
MRI + spatial features; internal and
external validation

Surgical difficulty in RARP; EBL and
OT; 290 patients with MRI

nnUNet_v2 + modified PointNet;
regression of spatial metrics

Dice = 0.8641 (segmentation);
mm-level landmark accuracy

New evaluation scheme for
preoperative planning

Saikali et al. (2025) [48]
Retrospective observational (single
center); preoperative clinical data;
internal comparison only

Prediction of urinary continence and
erectile function at 12 months
post-RARP; 8524 patients

ANN; prediction of continence and
potency; feature importance analysis AUC: 0.68 (continence), 0.74 (potency) Patient counseling and care

optimization

Intraoperative support

Amparore et al. (2024) [49]
Prospective single-center;
intraoperative video + clinical data;
internal validation only

Robotic nephrectomy; overlay time
and procedure safety; 20 patients with
renal masses

Computer vision + CNN; automatic
3D model registration; expert visual
assessment

Overlay time: CV~7 s, CNN~11 s Faster accurate AR-assisted surgery

Shi et al. (2025) [50]
Prospective–retrospective
development; preop CT + laparoscopy
video; clinical use only

MIPN patients; navigation and
dissection standardization; 46 patients

Augmented reality with AI overlay;
real-time anatomic guidance; 3D
visual overlay

Performance not quantified Improved surgical precision and
consistency

Bannone et al. (2024) [51]
Prospective multicenter; hyperspectral
+ RGB images; internal + external
(inter-center)

Tissue recognition during surgery;
13 tissue classes; 169 patients

CNN; real-time tissue segmentation;
expert review only TPR: skin 100%, liver 97%; Dice > 80% Improved intraoperative tissue

identification

Mannas et al. (2024) [52] Prospective pilot; 121 intraoperative
SRH images; tested on 10 patients

Surgical margin interpretation in
RALP; accuracy, sensitivity, specificity
vs. pathology; 22 patients

CNN; classify margin status in SRH;
no internal explainability methods

Accuracy 98%, sensitivity 83%,
specificity 99% (surgeons)

Supports intraoperative decision
making; may reduce positive margins

Chen et al. (2025) [53]
Prospective developmental; 730 RGB
images from RARC; retrospective
validation on 41 images

Real-time ureter segmentation during
RARC; segmentation quality (Dice,
IoU, recall, precision); 17 cases

CNN; semantic segmentation of ureter;
limited explainability (surgeon only)

Dice 0.71; IoU 0.55; recall 0.90;
precision 0.60

Reduces ureter misidentification;
improves safety and training

Nakamura et al. (2024) [54] Retrospective image-based; annotated
surgical video frames; internal test set

Robot-assisted gastrectomy; pancreas
localization; 926 train, 232 val., 80 test
images; 10 surgeons

Semantic segmentation (HRNet);
visual overlay (mask) Precision 0.70, recall 0.59, Dice 0.61 May improve anatomy recognition

intraoperatively; reduce POPF

Furube et al. (2024) [55]
Retrospective multicenter; surgical
videos from RAMIE; external
validation (8 videos)

Intraoperative RLN identification; IoU,
recognition rate improvement; 128
surgeries

Deep learning (CNN assumed);
semantic segmentation and
localization of RLN

IoU: 0.40 (right), 0.34 (left); accuracy
increased from 46.9% to 81.3%

May improve nerve identification and
reduce complications
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Table 1. Cont.

Study Study Characteristics Clinical Context AI Application Model Evaluation Clinical Relevance

Postoperative predictions

Geitenbeek et al. (2025) [56]
Retrospective multicenter cohort;
clinical/pathological data; internal
cross-validation

Local recurrence after R-TME; 3-year
LR (3.8%) prediction; 1039 rectal
cancer patients in 6 EU countries

ML (XGBoost, others); SHAP for
feature importance; LR prediction XGBoost: accuracy 77.1%, AUC 0.76 Supports safe R-TME; helps identify

patients at high LR risk

Ghaffar et al. (2025) [57] Retrospective video-based cohort;
surgical video + clinical data; 4 centers

Nerve-sparing technique vs. erectile
recovery; AUC for 12 mo erectile
function; 64 patients, 1104 NVB
retractions

Computer vision + supervised ML (RF,
MLP, XGBoost); gesture-derived visual
features

RF: AUC 0.83; MLP: AUC 0.74;
XGBoost: AUC 0.78; 5-fold nested CV

Real-time alerts; ICC 0.68–0.76;
potential training tool for surgeons

* Only original data. 3D: three-dimensional; AI: artificial intelligence; ANN: artificial neural network; AR: augmented reality; AUC: area under the curve; ChatGPT: chat generative
pre-trained transformer; CNN: convolutional neural network; CT: computed tomography; CV: computer vision; DL: deep learning; EBL: estimated blood loss; HRNet: high-resolution
network; ICC: intra-class correlation coefficient; IoU: intersection over union; IPS: image processing system; LOS: length of stay; LR: local recurrence; MIPN: minimally invasive partial
nephrectomy; MIS: minimally invasive surgery; ML: machine learning; MLP: multi-layer perceptron; MRI: magnetic resonance imaging; NCDB: the National Cancer Database; NVB:
neurovascular bundle; OR: odds ratio; OS: overall survival; OT: operation time; POPF: postoperative pancreatic fistulas; RALP: robotic-assisted laparoscopic radical prostatectomy;
RAMIE: robot-assisted minimally invasive esophagectomy; RAPN: robot-assisted partial nephrectomy; RARC: robot-assisted radical cystectomy; RARP: robot-assisted radical
prostatectomy; RF: random forest; RGB: red green blue; RLN: recurrent laryngeal nerve; R-TME: robot-assisted total mesorectal excision; SHAP: SHapley Additive exPlanation; SPARE:
scoring system based on preoperative aspects and dimensions used for an anatomical classification; SRH: stimulated Raman histology; Tetrafecta: optimal perioperative outcomes in
nephron-sparing surgery; TPR: true positive rate; VIF: variance inflation factor; WIT: warm ischemic time; XGBoost: eXtreme Gradient Boosting.
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3.1. Preoperative Planning

The five analyzed studies demonstrate the growing integration of various types of
artificial intelligence into preoperative planning in robotic surgery, each using distinct AI
approaches to enhance decision making and outcome prediction. Emile et al. [44] devel-
oped a logistic regression-based predictive model using the National Cancer Database
to estimate the risk of conversion from minimally invasive to open colectomy in colon
cancer. Their analysis identified key clinical and tumor-related predictors, and demon-
strated that robotic surgery is independently associated with a significantly lower risk
of conversion compared with laparoscopy. Huang et al. [45] utilized AI-based analy-
sis of three-dimensional computed tomography (CT) reconstructions of renal tumors to
enhance anatomical characterization and improve prediction of Tetrafecta outcomes in
robotic-assisted partial nephrectomy, achieving a higher AUC of 0.854 compared with
0.755 obtained with traditional two-dimensional system based on preoperative aspects
and dimensions used for an anatomical classification scoring (SPARE). Lu et al. [46] ex-
amined how pelvic and prostate anatomical dimensions affect the surgical difficulty of
robot-assisted radical prostatectomy by applying an eXtreme Gradient Boosting (XGBoost)
model to magnetic resonance imaging (MRI)-derived metrics. The model outperformed
logistic regression in predicting prolonged operative time and increased blood loss. Mei
et al. [47] developed a convolutional neural network (CNN) trained directly on pelvic
MRI images to predict intraoperative difficulty in radical prostatectomy, achieving high
predictive performance (AUC ~0.85) and outperforming traditional morphometric models
based on manually extracted anatomical features. Finally, Saikali et al. [48] developed
artificial neural network models using preoperative clinical and functional variables from
over 8500 patients treated at a high-volume prostate cancer referral center, aiming to predict
recovery of urinary continence (AUC 0.68) and erectile function (AUC 0.74) one year after
robotic-assisted radical prostatectomy.

3.2. Intraoperative Support

A synthesis of seven recent studies demonstrates how various AI-based solutions
contribute to increasing the precision and safety of surgical procedures. It is important to
note that these studies vary in size. For instance, some studies, such as those by Amparore
et al. [49] and Chen et al. [53], are early feasibility research with relatively small sample
sizes (20 and 17 patients, respectively). While these pilot studies provide valuable insights
into the potential of AI in intraoperative support, their results should be interpreted with
caution, and further validation in larger populations is needed. In contrast, studies like
Bannone et al.’s [50] EX-MACHYNA trial, which includes 169 patients, offer more robust
evidence, demonstrating the broader applicability and effectiveness of AI-driven surgical
tools across diverse patient groups.

Amparore et al. [49] and Shi et al. [50] investigated the integration of AI with augmented
reality (AR) in robot-assisted partial nephrectomy. Both teams developed AI-enhanced systems
combining computer vision and machine learning to automatically align preoperative three-
dimensional (3D) anatomical models with intraoperative imaging. This enabled accurate
localization of tumors and vascular structures, thereby assisting surgeons in performing more
precise resections, improving healthy tissue preservation, and reducing warm ischemia time.
These findings highlight the value of AI in providing spatial navigation support and reducing
cognitive load during complex minimally invasive procedures.

Another promising application of AI in robotic cancer surgery is intraoperative tissue
recognition. In the EX-MACHYNA trial, Bannone et al. [51] combined hyperspectral
imaging with deep learning to develop an AI-driven system capable of distinguishing
malignant from benign tissues during surgery. This approach, termed “surgical optomics,”
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enabled real-time automatic tissue classification with high diagnostic accuracy and holds
potential for supporting intraoperative margin control in oncologic procedures. Similarly,
Mannas et al. [52] integrated stimulated Raman histology (SRH) with AI to assess surgical
margins during radical prostatectomy. Their system delivered near real-time feedback on
residual cancer presence, demonstrating diagnostic performance comparable to standard
histopathology and significantly reducing the time between tissue excision and clinical
decision making.

Artificial intelligence is also increasingly applied to real-time anatomical structure
segmentation during robotic surgery. Chen et al. [53] developed a CNN to identify and
delineate the ureters in robot-assisted radical cystectomy. Their fluorescence-like navigation
system provided continuous visual feedback, helping reduce the risk of iatrogenic injury.
Similarly, Nakamura et al. [54] applied a semantic segmentation model to accurately high-
light the pancreas during robot-assisted gastrectomy—supporting surgeons in avoiding
unintended damage to this anatomically challenging and poorly visualized organ. These
applications demonstrate how AI-based segmentation can enhance intraoperative safety
and improve the precision of complex surgical procedures.

Furube et al. [55] addressed the intraoperative challenge of identifying recurrent
laryngeal nerves during robot-assisted minimally invasive esophagectomy. They developed
and validated an AI model that analyzed endoscopic video in real time to generate visual
cues for nerve localization. This system assisted surgeons in preserving nerve integrity and
helped prevent complications such as vocal cord paralysis, demonstrating the value of AI
in enhancing nerve safety during complex thoracic procedures.

3.3. Postoperative Predictions

Both studies by Geitenbeek et al. [56] and Ghaffar et al. [57] illustrate the clinical utility
of AI in predicting postoperative outcomes after robotic cancer surgery, despite differing in
surgical context, data sources, and clinical endpoints. Ghaffar et al. applied computer vision
techniques to intraoperative video recordings from nerve-sparing radical prostatectomy to
quantify neurovascular bundle (NVB) retraction. The extracted image-based features, when
integrated into machine learning models, significantly improved the prediction of erectile
function recovery, with the AUC increasing from 0.78 to 0.83. In contrast, Geitenbeek et al. [56]
analyzed structured clinical and pathological data from a large international multicenter
cohort of patients undergoing robotic total mesorectal excision (R-TME). Using an XGBoost
model, they predicted the risk of local recurrence with an AUC of 0.76, further enhanced by
explainable AI techniques: SHapley Additive exPlanation (SHAP) and local interpretable
model-agnostic explanations (LIME) that identified key predictors such as metastasis stage,
margin status, and postoperative complications. Although both studies were retrospective
and lacked external validation, they demonstrate the flexibility of AI in addressing distinct
postoperative outcomes—functional and oncological—through context-specific modeling
approaches. Taken together, these studies highlight how AI can complementarily lever-
age different types of data—structured clinical/pathological information and intraoperative
video—to provide both clinical and procedural insights in robotic oncologic surgery.

4. Discussion
The present review builds upon the thematic foundations established by the systematic

review of Moglia et al. [3], titled “A systematic review on artificial intelligence in robot-
assisted surgery”, which was among the first efforts to comprehensively summarize the
role of AI in this rapidly evolving surgical field. Both reviews highlight the increasing
integration of AI technologies—particularly computer vision, machine learning, and deep
learning—into robot-assisted surgical workflows and assess how these tools may enhance
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surgical performance, improve clinical outcomes, and support decision making. However,
revisiting this topic was both necessary and timely for several reasons. First, the field has
advanced considerably since the publication of the earlier review, with a marked increase
in studies reporting clinical applications and translational outcomes. Second, while Moglia
et al. laid a valuable foundation, their review primarily focused on preclinical, technical,
and simulation-based studies. Many of the included investigations addressed tool tracking,
surgical gesture recognition, or system validation in artificial or non-human environments.
In contrast, the current review focuses exclusively on the integration of AI in robotic cancer
surgery and includes only studies conducted with real patients.

It should be noted that evidence-based advantages of many other robotic procedures
in surgical oncology remain unclear [58]. However, the field is advancing rapidly, with
ongoing research continuing to push the boundaries of clinical applicability. For instance,
Quero et al. [59] provided in 2022 a comprehensive overview of computer-vision and
AI applications in colorectal cancer surgery, such as automatic recognition of surgical
phases and guidance during com-plex resections, as an early overview of potential in-
traoperative AI tools. More recently, Chen et al. [53] presented a more advanced stage
of development—demonstrating an early yet clinically grounded implementation of this
approach using data from real patients undergoing radical cystectomy.

The primary aim of this review was to synthesize available evidence on how AI is
applied in clinical oncological settings and to present findings that reflect actual patient
outcomes. By narrowing the scope to real-world oncological procedures, this review
seeks to bridge the gap between experimental validation and clinical relevance—thereby
providing insights directly applicable to surgical practice and future research directions.

The studies analyzed in the preoperative planning section highlight the growing
importance of AI in robotic surgery, with applications including structured data mod-
eling, AI-enhanced 3D imaging, and deep learning. Traditional machine learning algo-
rithms have shown strong performance in analyzing structured clinical data, whereas deep
learning—especially convolutional neural networks (CNNs)—has demonstrated superiority
in processing medical images and predicting procedural complexity. AI-driven 3D imaging
tools also facilitate enhanced anatomical visualization and support the development of person-
alized surgical strategies. Across the reviewed studies, predictive performance ranged from
moderate to high (AUCs 0.68–0.85), underlining AI’s potential to optimize surgical planning,
improve risk stratification, and enable patient-centered decision making.

Intraoperative support is one of the most promising areas for AI integration in robotic
surgery. The included studies describe diverse AI applications—from segmentation of
anatomical structures and fluorescence-like navigation to tissue classification and nerve
identification—all aimed at enhancing real-time intraoperative decision making. These tools
primarily rely on supervised deep learning models trained on large, annotated datasets and
have shown promising results in terms of accuracy, sensitivity, and specificity. While most are
still in the early phases of clinical validation, their integration into real-time surgical workflows
suggests growing feasibility and utility in improving intraoperative awareness, supporting
key maneuvers, reducing complication risk, and ultimately improving patient outcomes.

Finally, the studies by Ghaffar et al. [57] and Geitenbeek et al. [56] underscore AI’s
growing role in postoperative outcome prediction following robotic oncologic surgery. By
using diverse data sources—intraoperative video in one case and structured clinical data in
the other—these studies illustrate how tailored AI models may support personalized risk
stratification for both functional recovery and oncologic recurrence.

Despite the promising results obtained in this systematic review, several limitations
should be considered. The heterogeneity of the study designs and interventions presented
in the analyzed studies made it difficult to draw definitive conclusions regarding the opti-
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mal use of AI in specific surgical procedures. The included studies were based on diverse
oncology patient populations, most of which were small, and there are still relatively few
studies employing real patient data and AI tools in robotic oncologic surgery. Many studies,
such as those by Amparore et al. [49], Shi et al. [50] and Chen et al. [53] lacked external
validation, which limits the generalizability of their findings. Additionally, a number of
studies did not make their code or models publicly available (Table A2), raising concerns
about reproducibility and transparency—critical aspects in AI research. Another key chal-
lenge is the “black-box” nature of many CNN-based models, where the decision-making
process is not easily interpretable. This lack of interpretability can pose a barrier to clinical
acceptance, as clinicians may be hesitant to rely on AI predictions without understanding
the underlying rationale. Overall, while the findings gathered in this review provide useful
insights and serve as a valuable reference point, they do not constitute definitive evidence
of the benefits of specific AI applications in surgical practice. Further validation in larger
multicenter prospective cohorts, open-access models, and the integration of explainable AI
techniques remains necessary to ensure that AI-driven surgical tools can be trusted and
safely implemented in clinical practice.

5. Conclusions
New medical technologies represent a cornerstone of the future of medicine. Robotic

surgery has established itself as an integral part of oncological care and is increasingly
recognized as a clinical standard for the treatment of various cancers. The integration of AI
into robotic surgery holds the promise of further enhancing the efficiency, precision, and
overall quality of surgical care.

AI supports surgeons at multiple stages of the clinical pathway: from preoperative
planning, through real-time intraoperative assistance, to the prediction of postoperative
outcomes. Evidence suggests that its use can improve surgical precision, reduce the risk of
complications, and ultimately contribute to better patient outcomes in robotic cancer surgery.

Looking ahead, AI’s potential in robotic oncologic surgery is vast. Emerging trends such
as multimodal AI, which integrates imaging, clinical, and genomic data, hold promise for
more personalized surgical planning and risk prediction. Future research should focus on
optimizing AI algorithms for greater predictive accuracy and treatment personalization, as well
as evaluating their effectiveness and efficiency in clinical practice. Integration with emerging
technologies, such as augmented reality and advanced robotics, could further revolutionize
minimally invasive procedures. International collaborative datasets may help overcome current
limitations of small single-center studies, enhancing model generalizability. Finally, ethical and
legal considerations remain crucial: the extent to which intraoperative decision making can be
safely delegated to AI, and how responsibility is shared between clinicians and AI systems, will
require careful evaluation. Addressing these aspects will be key to ensuring safe, effective, and
broadly applicable AI-driven surgical interventions in the future.
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Appendix A

Table A1. Search strings used across databases for the systematic literature review.

Database Search String

EMBASE

((((((((surgical AND ‘procedure’/exp OR surgical) AND oncology OR oncologic) AND surgery
OR cancer) AND surgery OR tumor) AND resection OR oncological) AND resection OR

tumor) AND removal OR cancer) AND operation*) AND (‘neoplasm’/exp OR cancer OR
tumor OR tumour OR malignan* OR oncology OR neoplasm*) AND ((((((‘robotics’/exp OR

robot) AND assisted AND ‘surgery’/exp OR robotic) AND surgery OR ‘robot assisted’) AND
surgery OR surgical) AND robot* OR robotic) AND system*) AND (((((((artificial AND

‘intelligence’/exp OR machine) AND ‘learning’/exp OR deep) AND learning OR neural)
AND network* OR predictive) AND algorithm* OR artificial) AND intelligence OR machine)

AND learning OR ai))

MEDLINE

((exp Artificial Intelligence/) OR (exp Machine Learning/) OR (exp Neural Networks,
Computer/) OR (artificial intelligence or AI or machine learning or deep learning or neural

network* or predictive algorithm*).mp.)) AND ((exp Robotic Surgical Procedures/) OR
(robotic surgery or robot-assisted surgery or surgical robot* or robotic system*).mp. OR (exp

Robotics/)) AND ((exp Neoplasms/) OR (cancer or oncology or tumour or tumor or
neoplasm* or malignan*).mp.) AND ((exp Surgical Procedures, Operative/) OR (oncologic

surgery or surgical oncology or cancer surgery or tumor resection or oncological resection or
tumor removal).mp.)

Web of Science

Refine results for TS=(“artificial intelligence” OR “machine learning” OR “deep learning” OR
“neural network*” OR “predictive algorithm*” OR “AI”) AND TS=(“robotic surgery” OR

“robot-assisted surgery” OR “surgical robotics” OR “robotic system*” OR “surgical robot*”)
AND TS=(“cancer” OR “oncology” OR “tumor” OR “tumour” OR “neoplasm*” OR

“malignan*”) AND TS=(“surgery” OR “surgical procedure” OR “oncologic surgery” OR
“cancer surgery” OR “complex surgery” OR “tumor resection” OR “tumour removal”) and
2024 or 2025 (Publication Years) and Early Access or Review Article or Article (Document

Types) and English (Languages)

Google Scholar

(“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural networks”)
AND (“robotic surgery” OR “robot-assisted surgery” OR “surgical robotics”) AND

(“oncology” OR “cancer” OR “tumor” OR “tumour” OR “neoplasm”) AND (“complex
surgery” OR “oncologic surgery”)

medRxiv
(“artificial intelligence” OR “machine learning” OR “deep learning”) AND (“robotic surgery”

OR “robot-assisted surgery” OR “surgical robotics”) AND (“oncology” OR “cancer” OR
“neoplasm”) AND (“complex surgery” OR “tumor resection” OR “oncologic surgery”)

IEEE
(“Full Text Only”:robotic surgery OR “Full Text Only”:surgical robotics) AND (Full Text
Only”:oncology OR “Full Text Only”:cancer OR “Full Text Only”:tumor) AND (Full Text

Only”:artificial intelligence OR “Full Text Only”:deep learning)

Table A2. Quality assessment of included publications.

Author (Year) TRIPOD-AI Score *
Assessment and Comment

NIH Assessment **
Score and Comment

Overall ***
Assessment

Mannas et al. (2025) [52] Good
Very well-prepared publication,
strong validation and results, no

model release.
Good Well-executed with reliable data

sources and outcome evaluation. 3

Mei et al. (2025) [47] Good
Full documentation,

interpretability, multicenter
validation, code available.

Good

Innovative approach with
appropriate use of AI. Needs

external validation and clearer
reporting.

3

Amparore et al. (2024)
[49] Fair+

Very well described methodology,
detailed description of pipeline

and metrics; no code and external
validation

Good
Comprehensive design with
clearly defined exposure and

outcome measures.
2
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Table A2. Cont.

Author (Year) TRIPOD-AI Score *
Assessment and Comment

NIH Assessment **
Score and Comment

Overall ***
Assessment

Bannone et al. (2024) [51] Fair+
Full architecture and metrics; no

model release and limited
interpretability.

Good Clear methodology with a focus
on practical implementation. 2

Chen et al. (2025) [53] Fair+
Good methodology and clinical
application, no interpretability

and code.
Good Real-world clinical data supports

robustness of early clinical use. 2

Emile et al. (2024) [44] Fair+

Strong clinical analysis,
multicenter; however, full
interpretability and model

availability are lacking.

Good

Well-designed with clearly
defined objectives and consistent
methodology. Limited external

validation.

2

Furube et al. (2024) [55] Fair+
Model works intraoperatively,

good methodology; no external
validation and code.

Good Innovative AI use with clear
patient segmentation. 2

Geitenbeek et al. (2025)
[56] Fair+

Extensive clinical analysis, good
metrics; no interpretability and

model.
Good Comprehensive design with

appropriate outcome tracking. 2

Lu et al. (2024) [46] Fair+
Real-time system, but no

interpretability and code, internal
validation only.

Good

Robust statistical methods and
adequate sample size. Some
missing details in handling

confounders.

2

Saikali et al. (2025) [48] Fair+
Good implementation and

analysis, no code and external
validation.

Good

Thorough methodology and
strong outcome focus. Reporting
of model performance could be

expanded.

2

Shi et al. (2025) [50] Fair+ Good presentation of results, but
no code and external validation. Good Strong performance metrics with

appropriate AI integration. 2

Ghaffar et al. (2025) [57] Fair
Innovative topic but missing

many key elements of AI
reporting.

Fair
Lacks confounder control and

statistical depth, but relevant AI
usage.

1

Huang et al. (2025) [45] Good
Highest level of detail,

multicenter validation, partially
available model.

Fair
Good clinical relevance but lacks
transparency in reporting and has

potential selection bias.
1

Nakamura et al. (2024)
[54] Fair

No interpretability and code;
limited description of the model

architecture.
Good Strong methodology with robust

outcome definitions. 1

* TRIPOD-AI scale: good 15–17; fair+ 12–14.5; fair 10–11.5. ** NIH scale: good—the study fulfills most key
criteria. There are no major methodological flaws, and the risk of bias is low. The results are considered reliable
and valid; fair—the study meets some criteria but has some methodological weaknesses, such as incomplete
blinding, limited data reporting, or unclear control of confounding. These do not critically undermine the results;
poor—the study has major limitations, such as unclear population, lack of temporality between exposure and
outcome, uncontrolled confounding, or substantial loss to follow-up. There is a high risk of bias, and the results
are likely unreliable. *** 3—good and good; 2—fair+ and good; 1—good/fair and fair; 0—fair/poor and poor.
NIH: National Institutes of Health; TRIPOD-AI: Transparent Reporting of a multivariable pre-diction model for
Individual Prognosis or Diagnosis–Artificial Intelligence.
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